Advancing Motor Performance with Accurate Torque Measurement
Advancing Motor Performance with Accurate Torque Measurement
The Client
The Edinburgh University Formula Student (EUFS) Team, was established in October 2014 and now consists of over 90 members across the university, with complementary skills in engineering, architecture, business and economics.
For the first time in 2016, the team participated in the Class 1 of Formula Student, the world’s largest student engineering competition run by the Institution of Mechanical Engineers. The event took place with 130 teams from more than 30 countries, including Africa and Asia, where the EUFS team received the “Spirit of the Formula Student Award” for overcoming multiple challenges with limited resources to help other teams to overcome theirs.
Over the course of the year, the team has been building a new car from scratch, including the frame, body panels and even nose cones. This year they are aiming to improve their performance at Silverstone with a new, and a better-designed formula racing car. They have been working on improving vehicle dynamics, optimising its wheels, and secured a new Kawasaki four-cylinder inline Ninja ZX636R engine, which needed to undergo scrupulous testing.
The Challenge
In preparation for this year’s competition, the EUFS team desperately needed an incredibly accurate torque and horsepower data, which they lacked last year, for the design validation contest as a part of the Silverstone event.
As a part of her final year project, Meghan Brown, an Electrical/ Mechanical Engineering student, was tasked to design a state-of-art dynamometer to measure engine torque and horsepower. One of the most important aspects of this project was to build a high-spec customised powertrain, coupling the engine and pump, that perfectly supported the inline rotary torque transducer. The objective was to align the shaft of the M425 Torque Transducer with the torque, which needed to be driven through the centre line of the shaft. Unlike disk transducers that require very fine alignment tolerances when mounting, the M425’s longer shaft allows a greater degree of flexibility in terms of alignment.
The torque transducer fits into the drive train or test bed, using standard keyway shafts and couplings, holding them securely in place. This is mounted inline and bolted to a level plate, to ensure alignment, preventing damage to the transducer and guaranteeing optimal accuracy.
Solution
The built system is able to offer seamless power transmission with integrated sensors for monitoring and control. Using a hydraulic axial piston pump to load the engine, a Datum Electronics M425 rotary torque transducer is mounted securely inline, coupling the engine and pump, capable of measuring shaft speed and power.
The M425 Torque Transducer is the most essential part of this dynamometer measuring system. It was selected for its high sampling rates, accuracy, ability to customise the output signal type to ensure system compatibility and competitive price.
Impact
Competition rules demand that engines have a single air intake a mere 20mm in diameter, significantly reducing the torque and horsepower, which the engine can achieve, making it all the more critical for the team to test and understand the response of the engine to implement changes in their drive strategy. Using the new-built dynamometer with an accurate inline torque transducer to test the engine gave the team a better understanding of its mechanical performance and determined the measures that could be taken to improve its performance.
The EUFS team is currently making the final preparations for the Silverstone event, taking place on the July 21-23, making final checks and making sure that everything is running smoothly. We hope they excel in their mission and that the project is going to turn out to be a huge success for everyone involved in the event. Good luck, everyone!